DatomsDB Oracle Agent Implementation Summary
🎯 Implementation Complete
The DatomsDB Oracle AI Agent system has been successfully implemented according to the detailed specifications. This document summarizes what was built and how to use it.
📁 File Structure Created
src/agents/
├── config/
│ └── agent_config.json # Main configuration file
├── prompts/
│ ├── nlu_system_prompt.md # Natural Language Understanding prompt
│ └── response_gen_system_prompt.md # Response generation prompt
├── tools/
│ ├── list_data_sources.json # Tool schema for listing data sources
│ ├── list_data_assets.json # Tool schema for listing data assets
│ ├── query_data_asset.json # Tool schema for querying assets
│ ├── get_data_source_details.json # Tool schema for data source details
│ └── get_data_asset_details.json # Tool schema for data asset details
├── memory/
│ └── memoryManager.js # SQLite-based conversation memory
├── masterAgent.js # Task coordinator and scheduler
├── chatAgent.js # LLM interaction and NLU handler
├── execAgent.js # Safe execution of DatomsDBS operations
└── README.md # Comprehensive documentation
src/api/routes/
└── agentRoutes.js # Express routes for agent API
tests/agents/
└── execAgent.test.js # Unit tests for ExecAgent
docs/
└── AGENT_SETUP.md # Complete setup guide with Docker
🏗️ Architecture Implemented
Three-Agent System
- Master Agent - Lightweight task scheduler and coordinator
- Chat Agent - Handles LLM interaction, NLU, and response generation
- Exec Agent - Safely executes operations on existing DatomsDBS services
Key Features Delivered
- ✅ Natural language to structured command conversion
- ✅ Secure permission-based execution
- ✅ SQLite-based conversation memory
- ✅ Rate limiting and security controls
- ✅ Configurable LLM integration (Ollama support)
- ✅ Comprehensive error handling
- ✅ Response generation back to natural language
- ✅ Tool-based architecture for extensibility
🔧 API Endpoints Created
Main Interaction Endpoint
POST /api/agent/v1/interact
- Accepts natural language queries or structured commands
- Returns processed results with conversation context
- Supports both types:
natural_languageandstructured_command
Health and Monitoring
- GET
/api/agent/v1/health- System health check - GET
/api/agent/v1/stats/{userId}- User interaction statistics - GET
/api/agent/v1/system/status- Detailed system status
🛠️ Tools/Actions Available
Data Sources
list_data_sources- List available data sources with filtersget_data_source_details- Get detailed data source information
Data Assets
list_data_assets- List created data assets (DatomsDB instances)get_data_asset_details- Get detailed data asset informationquery_data_asset- Execute Datalog queries against assetsget_schema_for_data_asset_source- Get schema information
Asset Management
create_data_asset_from_db_source- Create assets from database sourcesadd_datoms_to_asset- Add datoms to existing assets (high privilege)
Special Actions
clarify- Request clarification for ambiguous queriescannot_handle- Indicate unsupported queries
🔒 Security Features Implemented
Permission Control
- Integration with existing
accessControlService - Resource-level access control for all operations
- User authentication required for all endpoints
Query Safety
- Datalog query validation to prevent unsafe operations
- Parameter sanitization and type checking
- Rate limiting (60 requests/minute per user by default)
Error Handling
- Graceful degradation when LLM service unavailable
- Comprehensive error logging and user feedback
- Fallback to structured responses when needed
💾 Memory System
SQLite Database Schema
CREATE TABLE interactions (
id TEXT PRIMARY KEY,
session_id TEXT NOT NULL,
user_id TEXT NOT NULL,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP,
user_query_type TEXT NOT NULL,
user_query_content TEXT NOT NULL,
llm_nlu_prompt TEXT,
llm_generated_action TEXT,
llm_generated_params_json TEXT,
exec_agent_tool_called TEXT,
exec_agent_tool_params_json TEXT,
exec_agent_result_status TEXT,
exec_agent_result_summary_json TEXT,
llm_response_gen_prompt TEXT,
final_response_to_user_type TEXT,
final_response_to_user_content TEXT,
user_feedback_rating INTEGER,
user_feedback_comment TEXT,
processing_time_ms INTEGER
);
Features
- Conversation context (last 5 interactions per session)
- User interaction statistics and analytics
- Complete interaction logging for future learning
- Feedback collection capability
🚀 Quick Start
1. Install Dependencies
npm install axios sqlite3 uuid
2. Set Up Local LLM (Ollama)
# Run Ollama container
docker run -d --name ollama -p 11434:11434 -v ./ollama-data:/root/.ollama ollama/ollama:latest
# Download model
docker exec ollama ollama pull deepseek-r1:1.5b
3. Start DatomsDBS Server
npm start
4. Test Agent
curl -X POST http://localhost:9000/api/agent/v1/interact \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_TOKEN" \
-d '{
"userId": "test-user",
"type": "natural_language",
"query": "List all my data sources"
}'
📝 Example Usage
Natural Language Queries
- "Show me all my data sources"
- "List data assets created from MySQL databases"
- "Query the users table in asset abc123"
- "Create a new data asset from source xyz with tables users and orders"
Structured Commands
{
"action": "list_data_sources",
"params": {
"filter_by_type": "mysql",
"filter_by_status": "active"
}
}
🧪 Testing
Unit Tests
- Comprehensive ExecAgent tests covering all major functions
- Permission checking, rate limiting, and query safety tests
- Mock-based testing for service integration
Integration Testing
npm test # Run unit tests
npm run test:integration # Run integration tests
npm run test:coverage # Run with coverage
📊 Configuration
Main Config (src/agents/config/agent_config.json)
{
"llm_service_url": "http://localhost:11434/api/generate",
"llm_model_name": "mistral",
"memory_type": "sqlite",
"memory_sqlite_path": "./data/agent_memory.sqlite",
"max_context_history_length": 5,
"max_llm_tokens": 4096,
"llm_temperature": 0.1,
"enable_response_generation": true,
"security": {
"rate_limit_per_minute": 60
}
}
Environment Variables
LLM_SERVICE_URL- Override LLM service URLLLM_MODEL_NAME- Override model name
🔄 Integration with Existing DatomsDBS
Seamless Integration
- ✅ Uses existing service layer (
dataSourceService,datomsDbManagerService) - ✅ Integrates with existing access control (
accessControlService) - ✅ Follows existing API patterns and middleware
- ✅ No modifications to core DatomsDBS functionality
- ✅ Added to existing route structure (
/api/agent/v1/*)
Authentication
- Uses existing
combinedAuthmiddleware - Respects existing user permissions and roles
- Maintains security boundaries
📈 Monitoring and Analytics
Built-in Metrics
- User interaction counts and success rates
- Processing time tracking
- Error rate monitoring
- Conversation history analysis
Health Monitoring
- Component health checks
- LLM service connectivity monitoring
- Database health verification
- System resource tracking
🔮 Future Enhancements Ready
Extensibility Points
- Easy tool addition via JSON schemas
- Prompt template customization
- Multiple LLM model support
- Custom memory backends
- Advanced analytics integration
Planned Features
- Multi-turn conversation improvements
- Tool usage learning and optimization
- Custom user prompt templates
- Advanced query optimization
- Integration with more data sources
✅ Verification Checklist
All requirements from the original specification have been met:
- ✅ Three-agent architecture (Master, Chat, Exec)
- ✅ Local LLM integration with Docker support
- ✅ Natural language to structured command conversion
- ✅ Secure execution with permission checks
- ✅ SQLite-based conversation memory
- ✅ Configurable system with environment variable support
- ✅ Comprehensive error handling and security
- ✅ Tool-based extensible architecture
- ✅ Complete documentation and setup guides
- ✅ Unit tests and integration patterns
- ✅ Production-ready deployment configuration
🎉 Ready for Production
The DatomsDB Oracle Agent system is now fully implemented and ready for:
- Development testing and iteration
- Production deployment with Docker
- User acceptance testing
- Feature expansion and customization
For detailed setup instructions, see docs/AGENT_SETUP.md For technical details, see src/agents/README.md